
For the most part, the Radio Apocalypse series has focused on the radio systems developed during the early days of the atomic age to ensure that Armageddon would be as orderly an affair as possible. From systems that provided backup methods to ensure that launch orders would reach the bombers and missiles, to providing hardened communications systems to allow survivors to coordinate relief and start rebuilding civilization from the ashes, a lot of effort went into getting messages sent.
Strangely, though, the architects of the end of the world put just as much thought into making sure messages didn’t get sent. The electronic village of mid-century America was abuzz with signals, any of which could be abused by enemy forces. CONELRAD, which aimed to prevent enemy bombers from using civilian broadcast signals as navigation aids, is a perfect example of this. But the growth of civil aviation through the period presented a unique challenge, particularly with the radio navigation system built specifically to make air travel as safe and reliable as possible.
Balancing the needs of civil aviation against the possibility that the very infrastructure making it possible could be used as a weapon against the U.S. homeland is the purpose of a plan called Security Control of Air Traffic and Air Navigation Aids, or SCATANA. It’s a plan that cuts across jurisdictions, bringing military, aviation, and communications authorities into the loop for decisions regarding when and how to shut down the entire air traffic system, to sort friend from foe, to give the military room to work, and, perhaps most importantly, to keep enemy aircraft as blind as possible.
Highways in the Sky
As its name suggests, SCATANA has two primary objectives: to restrict the availability of radio navigation aids during emergencies and to clear the airspace over the United States of unauthorized traffic. For safety’s sake, the latter naturally follows the former. By the time the SCATANA rules were promulgated, commercial aviation had become almost entirely dependent on a complex array of beacons and other radio navigation aids. While shutting those aids down to deny their use to enemy bombers was obviously the priority, safety demanded that all the planes currently using those aids had to be grounded as quickly as possible.

Understanding the logic behind SCATANA requires at least a basic insight into these radio navigation aids. The Federal Communications Commission (FCC) has jurisdiction over these aids, listing “VOR/DME, ILS, MLS, LF and HF non-directional beacons” as subject to shutdown in times of emergency. That’s quite a list, and while the technical details of the others are interesting, particularly the Adcock LF beacon system used by pilots to maneuver onto a course until alternating “A” and “N” Morse characters merged into a single tone, but for practical purposes, the one with the most impact on wartime security is the VOR system.
VOR, which stands for “VHF omnidirectional range,” is a global system of short-range beacons used by aircraft to determine their direction of travel. The system dates back to the late 1940s and was extensively built out during the post-war boom in commercial aviation. VOR stations define the “highways in the air” that criss-cross the country; if you’ve ever wondered why the contrails of jet airliners all follow similar paths and why the planes make turns at more or less the same seemingly random point in the sky, it’s because they’re using VOR beacons as waypoints.
In its simplest form, a VOR station consists of an omnidirectional antenna transmitting at an assigned frequency between 108 MHz and 117.95 MHz, hence the “VHF” designation. The frequency of each VOR station is noted on the sectional charts pilots use for navigation, along with the three-letter station identifier, which is transmitted by the station in Morse so pilots can verify which station their cockpit VOR equipment is tuned to.
Each VOR station encodes azimuth information by the phase difference between two synchronized 30 Hz signals modulated onto the carrier, a reference signal and a variable signal. In conventional VOR, the amplitude-modulated variable signal is generated by a rotating directional antenna transmitting a signal in-phase with the reference signal. By aligning the reference signal with magnetic north, the phase angle between the FM reference and AM variable signals corresponds to the compass angle of the aircraft relative to the VOR station.
More modern Doppler VORs, or DVORs, use a ring of antennas to electronically create the reference and variable signals, rather than mechanically rotating the antenna. VOR stations are often colocated with other radio navigation aids, such as distance measuring equipment (DME), which measures the propagation delay between the ground station and the aircraft to determine the distance between them, or TACAN, a tactical air navigation system first developed by the military to provide bearing and distance information. When a VOR and TACAN stations are colocated, the station is referred to as a VORTAC.
Shutting It All Down
At its peak, the VOR network around the United States numbered almost 1,000 stations. That number is on the decrease now, thanks to the FAA’s Minimum Operational Network plan, which seeks to retire all but 580 VOR stations in favor of cockpit GPS receivers. But any number of stations sweeping out fully analog, unencrypted signals on well-known frequencies would be a bonanza of navigational information to enemy airplanes, which is why the SCATANA plan provides specific procedures to be followed to shut the whole thing down.

SCATANA is designed to address two types of emergencies. The first is a Defense Emergency, which is an outright attack on the United States homeland, overseas forces, or allied forces. The second is an Air Defense Emergency, which is an aircraft or missile attack on the continental U.S., Canada, Alaska, or U.S. military installations in Greenland — sorry, Hawaii. In either case, the attack can be in progress, imminent, or even just probable, as determined by high-ranking military commanders.
In both of those situations, military commanders will pass the SCATANA order to the FAA’s network of 22 Air Route Traffic Control Centers (ARTCC), the facilities that handle traffic on the routes defined by VOR stations. The SCATANA order can apply to all of the ARTCCs or to just a subset, depending on the scale of the emergency. Each of the concerned centers will then initiate physical control of their airspace, ordering all aircraft to land at the nearest available appropriate airport. Simultaneously, if ordered by military authority, the navigational aids within each ARTCC’s region will be shut down. Sufficient time is obviously needed to get planes safely to the ground; SCATANA plans allow for this, of course, but the goal is to shut down navaids as quickly as possible, to deny enemy aircraft or missiles any benefit from them.
As for the specific instructions for shutting down navigational aids, the SCATANA plan is understandable mute on this subject. It would not be advisable to have such instructions readily available, but there are a few crumbs of information available in the form of manuals and publicly accessible documents. Like most pieces of critical infrastructure these days, navaid ground stations tend to be equipped with remote control and monitoring equipment. This allows maintenance technicians quick and easy access without the need to travel. Techs can perform simple tasks, such as switching over from a defective primary transmitter to a backup, to maintain continuity of service while arrangements are made for a site visit. Given these facts, along with the obvious time-critical nature of an enemy attack, SCATANA-madated navaid shutdowns are probably as simple as a tech logging into the ground station remotely and issuing a few console commands.
A Day to Remember
For as long as SCATANA has been in effect — the earliest reference I could find to the plan under that name dates to 1968, but the essential elements of the plan seem to date back at least another 20 years — it has only been used in anger once, and even then only partially. That was on that fateful Tuesday, September 11, 2001, when a perfect crystal-blue sky was transformed into a battlefield over America.
By 9:25 AM Eastern, the Twin Towers had both been attacked, American Airlines Flight 77 had already been hijacked and was on its way to the Pentagon, and the battle for United Flight 93 was unfolding above Ohio. Aware of the scope of the disaster, staff at the FAA command center in Herndon, Virginia, asked FAA headquarters if they wanted to issue a “nationwide ground stop” order. While FAA brass discussed the matter, Ben Sliney, who had just started his first day on the job as operations manager at the FAA command center, made the fateful decision to implement the ground stop part of the SCATANA plan, without ordering the shutdown of navaids.
The “ground stop” orders went out to the 22 ARTCCs, which began the process of getting about 4,200 in-flight aircraft onto the ground as quickly and safely as possible. The ground stop was achieved within about two hours without any further incidents. The skies above the country would remain empty of civilian planes for the next two days, creating an eerie silence that emphasized just how much aviation contributes to the background noise of modern life.
This articles is written by : Nermeen Nabil Khear Abdelmalak
All rights reserved to : USAGOLDMIES . www.usagoldmines.com
You can Enjoy surfing our website categories and read more content in many fields you may like .
Why USAGoldMines ?
USAGoldMines is a comprehensive website offering the latest in financial, crypto, and technical news. With specialized sections for each category, it provides readers with up-to-date market insights, investment trends, and technological advancements, making it a valuable resource for investors and enthusiasts in the fast-paced financial world.